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5.3  The Planet 

Author: Michele Moro 

5.3.1 Teacher’s guide 

 Title: the Planet 

 Introduction: Simulation of the motion of a planet (or another object) around 
the Sun based on the gravitational force; study of the conic curves. 

 Goals: 

- To improve the knowledge of some basic physics concepts, such as space, 
speed, acceleration, time; 

- To study the theory of the planet motion (Kepler’s and Newton’s laws, 
conics); 

- To study some aspects of the analytical representation of conics; 

- To get some experience of what a simulation is and to what extension it 
can give a measurable representation of a real phenomenon; 

- To combine appropriately integer operation with loss of precision (division 
and square root) in an expression in order to minimize the total error. 

 Age group: 16-19 years old. 

 Rationale of the teaching approach: physics is better taught and learned when 
theory is presented together with some experimental activities. The notion of gravi-
tational field is one of the most fascinating and difficult ones at the same time. The 
essence of the Kepler’s and Newton’s laws is not immediately intuitive and, there-
fore, the robotic simulation makes them more acceptable. The simulation, made 
with a relatively simple robot, is also the occasion to make some accessory reason-
ing about the interesting properties of conics and other geometrical aspects. 

5.3.2 The problem 

When Isaac Newton tried to determine what force justified the planetary motion in 
accordance with the Kepler’s laws, he reached the conclusion that this force must 
be a mutual attraction, proportional to the product of the masses involved (the sun 
and the planet) and inversely proportional to the square of the distance from their 
centers of mass. In formula, the form of this force, the gravitational force (fig. 
5.3.1), is given by: 

    FG = G M m / r2   (5.3.1) 

with G the universal constant equal to: 
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G = 6.670 10-11 Nm2kg-2  (5.3.2) 

 

 

 

 

 

 

 

Fig. 5.3.1 – The gravitational force 

Limiting the analysis to the motion of a single body around the sun, making the 
usual simplifying assumption that M (mass of the sun) >> m (mass of the body), it 
is possible to consider that the gravitational effect is limited to the only moving 
body, forced in its orbit by a centripetal acceleration in the form of: 

aG = FG / m = G M / r2 =  / r2  (5.3.3) 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.2 – The orbit of a body around the sun 

Under these conditions, the orbit is a conic which has the sun in one of its focus 
(fig. 5.4.2). The speed vector is always tangent to the orbit, oriented in the same di-
rection of the motion, whereas the acceleration with modulus aG is always directed 
from the body to the sun and, therefore, has an effect to accelerate (positive sign of 
the projection of the vector acceleration onto the speed vector) on the speed 
modulus, when the body is approaching and to decelerate (negative sign of the pro-
jection of the vector acceleration onto the speed vector), when the body is distanc-

FG=GMm/r2 FG=GMm/r2 

 

M m 

distance = r 

v 
a 

aphe- perihelion 

planet 

Su



Chap. 5- exemplary projects and examples 238

ing. At the point closest to the sun (called perihelion), the acceleration is orthogo-
nal to the speed and it is the greatest. In the case of the elliptical orbit, in the far-
thest point (the aphelion), the acceleration is still orthogonal but the speed is the 
smallest. 

Unfortunately, the analytical study of a gravitational field based on the force of 
(5.3.1) is very hard and out of competence of a normal secondary level student. 
Therefore, a practical experience, which can give at least a qualitative evidence of 
the kind of orbit a body is forced to follow in a gravitational field, is of great inter-
est. 

Conics can be analytically defined as the locus of points p, for which the ratio be-
tween the distance of p from a point F (focus) and a line D (Directrix) is constant. 
This ratio is called eccentricity (e): when 0  e <1 the locus is an ellipse, with e = 1 
a parabola, with e > 1 a hyperbola. In the cases of hyperbola and ellipse, these 
properties remain substantially the same for the second focus. Said a the semi-
major axis of the ellipse (or the distance between the center of the focuses and the 
cusp of the hyperbola), d and f the distance between the center and respectively D 
and F, it also holds: 

  f = e/a   e = f/a   (5.3.4) 

     d = a/e   (5.3.5) 

Thus, for e = 0 the two focuses coincide, while the directrix is at infinity, and you 
get the special case of ellipse of the circumference. 

The equation of an ellipse with the main focus placed on the origin and the other on 
its left on the x-axis is given by: 

   (x+f)2/a2 + y2/b2 = 1   (5.3.6) 

where a and f are the semi-major axis and the focal distance already defined above 
and b the semi-minor axis. An alternative characterization is given in polar coordi-
nates (fig. 5.3.3), placing the ellipses in the same position as in (5.4.6): 

   r = l / (1 + e cos )   (5.3.7) 

where l is the distance of the main focus from its vertical projection on the ellipse, 
r e  are the polar coordinates of a generic point on the ellipse. For the perihelion 
and aphelion it holds: 

  rPER = rMIN = a – f = [ = 0] = l / (1+e)  (5.3.8) 

  rAPH = rMAX = a + f = [ = ] = l / (1-e)  (5.3.9) 

rPER + rAPH = (l / (1+e)) + (l / (1-e)) = 2a a=l/1-e2 l=a (1-e2)  (5.3.10) 
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Fig. 5.3.3 – Ellipse in polar coordinates 

Finally one can easily verify that: 

b = a sqrt(1-e2) b2 = a2 – a2e2 = a2 – f2  b2 + f2 = a2 (5.3.11) 

from which it derives that the distance of focus from the topmost point of the el-
lipse coincides with the semi-major axis.  

Generally speaking, there is a known relation between speed and distance from the 
sun that, in the cases shown above, is given by: 

Elliptical trajectory:  v = sqrt( ((2/r)-(1/a)) )  (5.3.12) 

Parabolic trajectory :   v = sqrt( (2/r) )  (5.3.13) 

Hyperbolic trajectory:   v = sqrt( ((2/r)+(1/a)) ) (5.3.14) 

The speed of (5.3.13) is also known as the ‘escape speed’ (or ‘escape velocity’) be-
cause it is necessary that the initial speed of the body is greater than or equal to that 
of the escape speed for the body to escape the close orbit. 

In the elliptical case, the maximum (at perihelion) and minimum (at aphelion) 
speeds are given by: 

vPER = sqrt( ((2/(a-f))-(1/a)) )   (5.3.15) 

vAPH = sqrt( ((2/(a+f))-(1/a)) )   (5.3.16) 

whereas for the period T we have: 

T = (2/sqrt()) sqrt(a3)  T2 = (42/ ) a3   (5.3.17) 

in harmony with the Kepler’s third law. 

5.3.3 Our simulation with NXT 

In preparing the experience, one needs to be aware of the limitations, both physical 
and programming, of the NXT robot: inaccuracies in the control of motors and mo-
tion, integer arithmetic only (in the standard firmware, there is no floating point 
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support), basic operations (lacking in particular of trigonometric functions). The 
results of this experience have a rather qualitative than quantitative value. 

 

 

 

 

 

 

 

 

Fig. 5.3.4 – The ‘orbiting body’ 

The robot, which is the orbiting body, is a tribot (fig. 5.3.4), with two independ-
ently driven wheels and a third one free, and equipped with a sonar head mounted 
on a third motor in order to adjust the angle of its 'vision' during the motion. The 
sun is represented by a fixed object ‘visible’ to the sonar so that the distance r is 
measured by this sensor.  

The basic idea is to choose two reasonable values for  and a in order to obtain 
practical values for the other parameters, specifically speed and acceleration. You 
have to choose also an appropriate (small) time interval t on which the calculation 
of each motion step will be based. During the simulation, acceleration and speed 
will always be calculated using formulas (5.3.3) and (5.3.12) (assuming you have 
installed the square root block in your NXT-G environment).  

To simplify the simulation, we also assume that, initially, the robot is put on the 
aphelion, at a distance of a+f from the focus, so that its axis can be orthogonal as to 
the major axis of the expected elliptical trajectory. The simulation does not main-
tain any information about the position and the orientation of the robot: we always 
assume that, at any motion step, the starting position and orientation are correct as 
the cumulative effect of the previous steps.  

In the simulation, a step at time t is formed by small straight-line motion, followed 
by a rotation around the robot’s axis middle point. The first motion corresponds to 
the contribution of the tangential speed vector, and, therefore, it is calculated as 
v*t; the rotation corresponds to the contribution of the acceleration vector that ro-
tates the speed vector: fig. 5.3.5 shows that the vector composition of speed v at 
time t and its variation given by the vector v = aG * t. 
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Fig. 5.3.5 – Vector composition 

To ensure that the orientation of the robot at the instant t+t is the vector v+v, as 
shown by the figure, we need to rotate the robot of an angle  equal to: 

 = arctan((aG t sin ) / (v + aG t cos ))  (5.3.18) 

where  is the angle between vectors v and aG. 

A first rough approximation is to consider the acceleration vector always substan-
tially orthogonal to the speed vector ( = /2). With this simplification it holds: 

APPROX = arctan(aG t / v)  aG t / v   (5.3.19) 

Further (5.3.19) approximation of considering the angle so small as to have the arc-
tan value and the angle (in radiants) coincident has been applied. This produces a 
first approximated calculation of the rotation to be applied to the robot very simple. 

Plotting the theoretical ellipse and that of the simulation, obtained by applying the 
approximate method described above, by using the following values of characteris-
tic parameters (lengths scaled in centimeters) 

a=40  f=20  e=0.5  b = a sqrt(1-e2) = 20 3 

  =6000 t=0.5     (5.3.20) 

and starting, as already assumed, with the robot placed on the hypothetical aphelion 
and oriented parallel to the minor axis of the ellipse, we obtained the plotting val-
ues of fig. 5.3.6. As you can see the approximation is not good after the first quad-
rant. Thus, we decided to add a correction to this first approximation trying to 
maintain the calculation simple.  

From an analysis of the variation of the angle , while the point moves along the 
bottom semi-ellipse, you observe that, both at aphelion (rAF = a+f) and at perihelion 
(rPER = a-f) =/2, but along the path, the  angle decreases until it reaches a mini-
mum, which depends on the value of e, when r = a. With the data given above, the 
minimum is equal to MIN  = /3 with sin(MIN) =  3/2  0.87, cos(MIN) = 0.5, 
while MAX = /2 with sin(MAX) = 1 and cos(MAX) = 0. Therefore, we decided to 

aG t cos  

 
v v= aG t  

aG t sin  
v +v 
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apply a correction to the angle in the range where sin() is more different from 1, 
which has been empirically determined as a-f/2  r  a+f/2: in this interval, the ro-
tation to be applied is calculated as: 

APPROX   ((aG t sin m) / (v + aG t cos m)) = ((aG t 0.9) / (v + aG t 0.5) 
        (5.3.21) 

 

 

 

 

 

 

 

 

 

Fig. 5.3.6 – A first approximation 

With this correction, the simulated evolution is plotted in Fig. 5.3.7 and the im-
provement is evident. 

 

 

 

 

 

 

 

 

 

Fig. 5.3.7 – A second approximation 

Another straightforward correction is necessary in order to compensate the measure 
of the distance r performed by the sonar: in fact, the measure is less than the actual 
distance of the focus from the rotation point of the robot, which we consider as the 
application point of the speed and acceleration vectors, both because the object 
used as the attracting body has a non-null radius and because the sonar is at a cer-
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tain distance from the axis of the robot, where the rotation point lies. Thus, to ob-
tain the correct value of r, the measure must be incremented of the sum of these 
two distances (the sun’s radius and the offset of the sonar). 

In the practical realization with NXT, we must also take into account the limita-
tions of the integer calculation: besides delaying as much as possible all the divi-
sions in just one division as the final operation, in our case we must also deal with 
the imprecision introduced by the square root. It results more precise to execute the 
integer square root as the very last operation. But you must also take into account 
the relative error of the square root in cases of small and large numbers. This could 
suggest to move inside the square root external multiplicative factors (elevating 
them to their square), whereas divisional factors should be moved inside the square 
root only if the inner division maintains a quotient not too small (in order to main-
tain small the error of the integer square root). In doing these passages, you must 
not generate overflow of the 32 bit integer capacity (+231  2 109). 

Therefore, assuming that 

t = I / j Rw = p / q Dw = w / z   (5.3.22) 

with Rw the radius of the wheels, Dw the distance between the wheels and i, j, p, q, 
w, z integer values, for the straight-line motion step it follows: 

  vt = w Rw = wd (2/360)Rw   (5.3.23) 

where w and wd are the angles which the wheels must rotate of, respectively 
measured in radiants and degrees. From (5.3.23) you obtain the angle to be set as a 
parameter of the motor control block, expressed in degrees: 

  wd = 360vt /(2Rw)    (5.3.24) 

To perform this calculation accurately, we now apply the recommendations sug-
gested above: 

wd = 360sqrt(((2/r)-(1/a)))(i/j) /(2(314/100)(p/q)) =   
        = ( (9000iq) / (157pj) ) sqrt((2a - r) / (ar))  (5.3.25) 

Assuming that the first fraction (the terms are all constant) is reduced to the lowest 
terms as pp / qq , we could finally obtain: 

(9000iq) / (157pj) = pp/qq  wd = sqrt(pp2(2a - r) / (qq2ar))  
        (5.3.26) 

The convenience to move pp/qq under square root depends on their size. In the 
case of the values given by (5.3.20) and with standard wheels with a diameter of 56 
mm, it holds (linear measures in centimetres): 

t = 1/2 Rw = 28/10 (9000110) / (157228) = 11250 / 1099  
        (5.3.27) 
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pp and qq are too big to be moved under square root. Let us try to find a simpler 
approximation: 

 11250 / 1099  10.2365  1024/100 = 256/25  (5.3.28) 

Say isqrt and idiv respectively our available integer version of the square root and 
division, we obtain: 

wd = isqrt( idiv(pp2(2a - r), (qq2ar)) )   =   
        = isqrt( idiv(2562(2600040 - 6000r), (25240r)) )  =   
        = isqrt( idiv(65536(480 - 6r), (25r)) ) =   (5.3.29) 

The minimum value of wd is reached at the aphelion when r = a+f = 60: 

wdMIN = isqrt( idiv(65536(480 - 660), (2560)) ) =   
            = isqrt( idiv( 7864320, 1500) ) = isqrt(5242)  = 72 (5.3.30) 

corresponding to approximately 3.52 cm. The result is good because the precise 
value is 72.34. The maximum appears at the perihelion when r = a-f = 20: 

wdMAX = isqrt( idiv(65536(480 - 620), (2520)) ) =   
            = isqrt( idiv(23592960, 500) ) = isqrt(47185) = 217 (5.3.31) 

Even here the result, which corresponds to a move of about 10.6 cm, is good be-
cause its precise value is 217.04. 

Now, we consider the elementary rotation of the robot: to turn the robot of an angle 
, we need to set to its maximum the steering parameter of a move block (100% 
with the correct direction) and make the motors to rotate of an angle equal to: 

 wd = 360Dw  /(22Rw) = (90Dw /(Rw))   (5.3.32) 

The approximated values of  are given by (5.3.19) and (5.3.21), respectively for 
each one of the two identified parts of the orbit. Using the first formula: 

 = ((/r2)t) / (sqrt(((2/r)-(1/a)))) = sqrt(at2 / (r3(2a-r))) =   
    = sqrt(ai2 / (r3(2a-r)j2))      (5.3.33) 

wd = (90(w/z) /((314/100)(p/q))) sqrt(ai2 / (r3(2a-r)j2))  =  
       = (4500wq / (157zp)) sqrt(ai2 / (r3(2a-r)j2))  (5.3.34) 

Using the already used data and with Dw = w/z = 10, we obtain: 

wd = (450000 / (15728)) sqrt(600040 / (r3(80-r)4)) =  
       = (112500 / 1099) sqrt(60000 / (r3(80-r)))   (5.3.35) 

A 100 factor can be moved under square root, and we obtain: 

wd = (1125 / (1099r)) sqrt(600000000 / (r(80-r)))  (5.3.36) 
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For the acceleration increases faster than the speed when r varies, the maximum 
angle occurs when the acceleration is at its maximum and, thus, having the mini-
mum r (=20): 

wdMAX =  idiv( (1125isqrt( idiv(600000000, (20(80-20)) )) ),   
                (109920)) =  
                idiv( (1125isqrt( idiv(600000000, 1200)) ),   
                (21980)) =  
                idiv( (1125isqrt(500000) ), 21980) =  
                idiv((1125707), 21980) = idiv(795375, 21980) = 36 (5.3.37) 

The result is good because the correct value is 36.17. 

Now considering the second approximation of the formula (5.4.21), in the range of 
interest 30r50, it approximately follows 10v15, 1.25aGt3.2. With these 
values it is advisable to scale up of 100 in order to make some decimals significa-
tive for the integer calculations: 

  = ((aG t 90) / (100v + aG t 50)  (5.3.38) 

wd = (90(w/z) /((314/100)(p/q)))(aG(i/j)90 / (100v + aG(i/j)50)) =  
      = (81001060001000) / (314282r2(sqrt(1500000(80-r)/r) + (600025/r2) )) = 
        = 27638762 / (r10sqrt(15000r(80-r)) + 600025)   (5.3.39) 

With an intermediate value (r=a=40) and the usual truncations you obtain 13 de-
grees versus a precise 12.22. 

What about the power to be applied to the motors during the two types of motions? 
As known, in the absence of excessive load, the power control is actually a speed 
control. Considering that the speed of the second motion, the rotation, is not so im-
portant to have the feeling of the simulated speed, which is originally continuous, 
in every straight-line motion step we would impose a speed able to make the robot 
move exactly in the step time t of the simulation. The angular speed to be set fol-
lows from (5.3.24): 

 wd = wd / t = 360v/ (2Rw) degrees/s  (5.3.40) 

with t = 0.5, wd = 2wd. For with the given experimental data we have estimated 
72wd 217, it would follow 144wd 434. Assuming true the already estimated 
relation: 

P(ower) = (1/8.15)     (5.3.41) 

we obtain 17.66P53.25. Thus, if this range of powers is problematic, we could 
scale up or down the power of a given factor to maintain the same feeling of the 
motion, especially the increase of speed from aphelion to perihelion. 
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Finally, as regards the position of the sonar, we decided not to estimate step by step 
the viewing angle of the sonar in respect of the mutual orbiting body-sun position, 
because we didn’t want to maintain a state variable describing the position of the 
robot. Instead, a more robust solution is to initially put the sonar with its axis or-
thogonal to the robot, and at the beginning of every step make the sonar sweep an 
angle of sufficient amplitude in the range of , performing a certain number of 
readings and taking the minimum as a measure of the distance. 

5.3.4 The program 

We are describing the core of the program, which is an infinite loop every execu-
tion of which corresponding to a single step. One step is formed by three stages: 
the measurement of the distance, the straight-line motion, the rotation. 

The first stage is represented by the code of fig. 5.3.8. Assuming that the sonar is 
mounted on a motor connected to port B, the scanning of the head is made as fol-
lows: an initial rotation of 60 degrees in one direction; 5 steps with one reading at 
the beginning of every step, an updating of the variable d to represent the minimum 
distance measured, a rotation of 30 degrees in the opposite direction at the end of 
the step. After this evaluation, the head is repositioned to its original direction with 
a final rotation of 90 degrees. 

 

 

 

 

 

 

Fig. 5.3.8 – Part I: measuring the distance 

VarDecl(Name=delta, Type=NUM) -- the angle to be performed 

VarDecl(Name=min, Type=NUM) -- the minimum distance 

VarDecl(Name=r, Type=NUM) -- the distance for the calculations 

Var(Name=r.NUM, Act=WR, Val=255)  -- d=initial minimum 

Motor(Port=B, Dir=BK, Act=CONST, Pwr=20, PwrCtrl=ON,  
  Dur=60.DEG, Wait=ON, Next=BRK) 

Loop1: Loop(Ctrl=FOREVER, Dis=OFF) [ 

 Loop2: Loop(Ctrl=COUNT, Until=5, ShowCnt=OFF) [ 
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  So: SonarSens(Port=1, Cmp=??, Show=CM) 

  Ad1:MathOp(Type=ADD, A=So.Dist, B=<SonarOffset>) 

  Ad2:MathOp(Type=ADD, A=Ad1.Res, B=<SunRadius>) 

  Var(Name=min.NUM, Act=WR, Val=Ad2.Res) 

  Vd1: Var(Name=r.NUM, Act=RD) 

  Cm1: CmpOp(Type=LT, A=Ad2.Res, B=Vd1.Val) 

  Sw1: Switch(Ctrl=VAL, Type=LOGIC, Dis=ON,  
     CondUp=TRUE, Val=Cm1.Res)  

  [Sw1.IF 

   Vm1: Var(Name=min.NUM, Act=RD) 

   Var(Name=r.NUM, Act=WR, Val=Vm1.Val) 

  Sw1.IF] 

  [Sw1.ELSE 

  Sw1.ELSE] 

  Motor(Port=B, Dir=FD, Act=CONST, Pwr=20,  
     PwrCtrl=ON, Dur=30.DEG, Wait=ON, Next=BRK) 

 Loop2] 

Motor(Port=B, Dir=BK, Act=CONST, Pwr=20, PwrCtrl=ON,  
    Dur=90.DEG, Wait=ON, Next=BRK) 

The second stage (see fig. 5.3.9) is the calculation of the angle to be performed for 
the straight motion based on the (5.3.29) formula. This piece of code is rather 
straightforward. 

 

 

 

 

 

Fig. 5.3.9 – Part II: calculating the angle for straight motion 

 Vd2:Var(Name=r.NUM, Act=RD) 

 Mu1:MathOp(Type=MUL, A=Vd2.Val, B=6) 

 Su1:MathOp(Type=SUB, A=480, B=Mu1.Res) 
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 Mu2:MathOp(Type=MUL, A=65536, B=Su1.Res) 

 Vd3:Var(Name=r.NUM, Act=RD) 

 Mu3:MathOp(Type=MUL, A=25, B=Vd3.Val) 

 Di1:MathOp(Type=DIV, A=Mu2, B=Mu3.Res) 

 Sq1:Sqrt(x1=Di1.Res) 

 Var(Name=delta.NUM, Act=WR, Val=Sq1.Res) 

In order to give the impression of the variation of speed during the orbit, we apply 
a varying motor power in the range of 3060 (30 when the angle is minimum, i.e. 
72, 60 when it is maximum, i.e. 217), linearly scaling the angle value (fig. 
5.3.10): 

30 = 72+  60=217+  
(subtracting the first from the second)  30=145  =30/145  
= 30 - 3072/145  
pot = (30/145) + 30 - 3072/145 = (4350 + 30(-72)) / 145 (5.4.42) 

 

 

 

 

 

 

 

 

Fig. 5.3.10 – Part III: simulating the variation of speed 

 Vd4:Var(Name=delta.NUM, Act=RD) 

 Su2:MathOp(Type=SUB, A=Vd4.Val, B=72) 

 Mu4:MathOp(Type=MUL, A=Su2.Res, B=30) 

 Ad3:MathOp(Type=ADD, A=Mu4.Res, B=4350) 

 Di2:MathOp(Type=DIV, A=Ad3.Res, B=145) 

After the straight motion, a short rotation is applied. We must distinguish the sec-
tion in which we apply the simpler approximation of (5.3.19) from the section 
where we apply the more complex one (5.3.21). The choice is based on the value of 
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the measured distance from the focus: the simpler approximation is the case when 
such distance is out of the range of 3050 (fig. 5.3.11). 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3.11 – Part IV: to distinguish the two approximations 

 Vd5: Var(Name=r.NUM, Act=RD) 

 Ra1:Range(Type=OUT, A=30, B=50, Val=Vd5.Val) 

Now, for the ‘then part’ we must apply (5.3.36) (fig. 5.3.12): 

 

 

 

 

 

Fig. 5.3.12 – Part V: simpler approximation 

 Sw2: Switch(Ctrl=VAL, Type=LOGIC, Dis=ON,  
    CondUp=TRUE, Val=Ra1.Res)  

 [Sw2.IF 

  Vd6: Var(Name=r.NUM, Act=RD) 

  Su4:MathOp(Type=SUB, A=80, B=Vd6.Val) 

  Mu5:MathOp(Type=MUL, A=Su4.Res, B=Vd6.Val) 

  Di3:MathOp(Type=DIV, A=600000000, B=Mu5.Res) 

  Sq2:Sqrt(x1=Di3.Res) 
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  Mu6:MathOp(Type=MUL, A=Sq2.Res, B=1125) 

  Vd7: Var(Name=r.NUM, Act=RD) 

  Mu7:MathOp(Type=MUL, A=2156, B=Vd7.Val) 

  Di4:MathOp(Type=DIV, A=Di3.Res, B=Mu7.Res) 

  {1 

   Motor(Port=A, Dir=FD, Act=CONST, Pwr=15,  
      PwrCtrl=ON, Dur=Di4.Res.DEG, Wait=ON,  
      Next=BRK) 

  1} 

  {2 

   Motor(Port=C, Dir=BK, Act=CONST, Pwr=15,  
      PwrCtrl=ON, Dur=Di4.Res.DEG, Wait=ON,  
      Next=BRK) 

  2} 

 Sw2.IF] 

The more complex approximation follows (fig. 5.3.13). 

 

 

 

 

 

Fig. 5.3.13 – Part VI: more complex approximation 

 [Sw2.ELSE 

  Vd7: Var(Name=r.NUM, Act=RD) 

  Su5:MathOp(Type=SUB, A=80, B=Vd7.Val) 

  Mu6:MathOp(Type=MUL, A=Su5.Res, B=Vd7.Val) 

  Mu7:MathOp(Type=MUL, A=Mu6.Res, B=15000) 

  Sq3:Sqrt(x1=Mu7.Res) 

  Vd8: Var(Name=r.NUM, Act=RD) 

  Mu8:MathOp(Type=MUL, A=Vd8.Val, B=Sq3.Res) 
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  Mu9:MathOp(Type=MUL, A=Mu8.Res, B=10) 

  Ad4:MathOp(Type=ADD, A=Mu9.Res, B=150000) 

  Di5:MathOp(Type=DIV, A=27638762, B=Ad4.Res) 

  {1 

   Motor(Port=A, Dir=FD, Act=CONST, Pwr=15,  
      PwrCtrl=ON, Dur=Di5.Res.DEG, Wait=ON,  
      Next=BRK) 

  1} 

  {2 

   Motor(Port=C, Dir=BK, Act=CONST, Pwr=15,  
      PwrCtrl=ON, Dur=Di5.Res.DEG, Wait=ON,  
      Next=BRK) 

  2} 

 Sw2.ELSE] 

Loop1] 

 

 


